

Open Data Description Language
Specification

Version 3.0

Updated October 25, 2021

by Eric Lengyel

Terathon Software LLC
Lincoln, California

2 OpenDDL Specification

1 Introduction

�e Open Data Description Language (OpenDDL) is a generic text-based language that is designed to
store arbitrary data in a concise human-readable format. It can be used as a means for easily exchanging
information among many programs or simply as a method for storing a program’s data in an editable
format. Each unit of data in an OpenDDL file has an explicitly specified type, and this eliminates
ambiguity and fragile inferencing methods that can impact the integrity of the data. �is strong typing
is further supported by the specification of an exact number of bits required to store numerical data
values when converted to a binary representation.

�e data structures in an OpenDDL file are organized as a collection of trees. �e language includes a
built-in mechanism for making references from one data structure to any other data structure, effectively
allowing the contents of a file to take the form of a directed graph.

As a foundation for higher-level data formats, OpenDDL is intended to be minimalistic. It assigns no
meaning whatsoever to any data beyond its hierarchical organization, and it imposes no restrictions on
the composition of data structures. Semantics and validation are left to be defined by specific higher-
level formats derived from OpenDDL. �e core language is designed to place as little burden as possible
on readers so that it’s easy to write programs that understand OpenDDL.

�e OpenDDL syntax is illustrated in the “railroad diagrams” found throughout this specification, and
it is designed to feel familiar to C/C++ programmers. Whitespace never has any meaning, so OpenDDL
files can be formatted in any manner preferred.

OpenDDL Specification 3

2 Structures

An OpenDDL file is composed of a sequence of structures. A single structure consists of a type identifier
followed by an optional name, an optional list of properties, and its data payload enclosed in braces, as
shown in Figure 1. �ere are two general classes of structures called primitive structures and derived
structures. Primitive structures have types that are defined by OpenDDL itself, and they contain
primitive data such as integers, floating-point numbers, or strings. Derived structures represent custom
data types defined by a derivative file format, and they can contain other structures, primitive or derived,
that can be organized in a hierarchical manner.

Figure 1. An OpenDDL file contains a sequence of structures that follow the production rule
shown here.

[Example — Suppose that a derivative file format defined a data type called Vertex that contains the
3D coordinates of a single vertex position. �is could be written as follows.

Vertex
{
 float {1.0, 2.0, 3.0}
}

�e Vertex identifier represents a derived structure defined by the file format, and it contains another
structure of type float, which is a primitive data type defined by OpenDDL. �e data in the float
structure consists of the three values 1.0, 2.0, and 3.0. — End example]

If a structure has a type that is not recognized by an implementation, then that structure and all of the
data it contains must be ignored without producing an error. �is allows extensions to be added to a
data format without breaking compatibility with implementations that do not support them.

4 OpenDDL Specification

3 Data Types

OpenDDL defines the 16 primitive data types listed in Table 1, and they can be specified by the long
identifiers and short identifiers shown in Figure 2. �ere is no difference in the meaning between the
long and short identifiers, so they can be used interchangeably. �e three floating-point data types each
have additional long and short identifiers, making it possible to specify those types with four different
identifiers that all have equivalent meanings.

When used as the identifier for a structure, each entry in the Table 1 indicates that the structure is a
primitive structure and its data payload is composed of an array of literal values. Primitive structures
cannot have substructures.

Long Identifier Short Identifier Description

bool b Boolean type that can have the value true or false.

int8 i8 8-bit signed integer that can have values in the range [72− , 72 1−].

int16 i16 16-bit signed integer that can have values in the range [152− , 152 1−].

int32 i32 32-bit signed integer that can have values in the range [312− , 312 1−].

int64 i64 64-bit signed integer that can have values in the range [632− , 632 1−].

uint8 u8 An 8-bit unsigned integer that can have values in the range [0, 82 1−].

uint16 u16 16-bit unsigned integer that can have values in the range [0, 162 1−].

uint32 u32 32-bit unsigned integer that can have values in the range [0, 322 1−].

uint64 u64 64-bit unsigned integer that can have values in the range [0, 642 1−].

half, float16 h, f16 16-bit floating-point type in the standard S1-E5-M10 format.

float, float32 f, f32 32-bit floating-point type in the standard S1-E8-M23 format.

double, float64 d, f64 64-bit floating-point type in the standard S1-E11-M52 format.

string s Double-quoted character string with contents encoded in UTF-8.

ref r Sequence of structure names, or the keyword null.

type t Type whose values are identifiers naming the types in this table.

base64 z Generic binary data encoded as base64.

Table 1. �ese are the 16 primitive data types defined by OpenDDL.

OpenDDL Specification 5

Figure 2. �ese are the 16 primitive data types defined by OpenDDL.

�ere is no implicit type conversion in OpenDDL. Data belonging to a primitive structure must be
directly parsable as literal values corresponding to the structure’s data type.

�e type data type is convenient for schemas built upon OpenDDL itself in order to define valid type
usages in derivative file formats.

3.1 Booleans

A boolean value is one of the keywords false or true, as shown in Figure 3. �e numerical values 0
and 1 may also be specified, and they are equivalent to false or true, respectively.

Figure 3. A boolean value is one of the keywords false or true or one of the equivalent
numerical values 0 or 1.

6 OpenDDL Specification

3.2 Integers

Integers can be specified as a decimal number, a hexadecimal number, an octal number, a binary
number, or a single-quoted character literal.

Between any two consecutive digits of each type of integer literal, a single underscore character may
be inserted as a separator to enhance readability. �e presence of underscore characters and their
positions have no significance, and they do not affect the value of a literal.

A decimal literal is simply composed of a sequence of numerical digits, as shown in Figure 4, and
leading zeros are permitted.

Figure 4. A decimal literal is any sequence of numerical digits.

A hexadecimal literal is specified by prefixing a number with 0x or 0X, as shown in Figure 5. �is is
followed, without any intervening whitespace, by any number of hexadecimal digits, shown in Figure 6,
that don't cause the underlying integer type to overflow. �e letters A–F in a hexadecimal literal are not
case sensitive.

Figure 5. A hexadecimal literal starts with 0x or 0X and continues with one or more hexadecimal
digits.

Figure 6. A hexadecimal digit is a numerical digit 0–9 or a letter A–F (with no regard
for case).

An octal literal is specified by prefixing a number with 0o or 0O, as shown in Figure 7. �is is followed,
without any intervening whitespace, by any number of digits between 0 and 7, inclusive, that don't
cause the underlying integer type to overflow.

OpenDDL Specification 7

Figure 7. An octal literal starts with 0o or 0O and continues with one or more octal digits.

A binary literal is specified by prefixing a number with 0b or 0B, as shown in Figure 8. �is is followed,
without any intervening whitespace, by any number of zeros and ones that don't cause the underlying
integer type to overflow.

Figure 8. A binary literal starts with 0b or 0B and continues with one or more binary digits.

A character literal is specified by a sequence of printable ASCII characters enclosed in single quotes,
as shown in Figure 9. OpenDDL supports the escape sequences listed in Table 2 and illustrated in
Figure 10. Escape sequences may be used to generate control characters or arbitrary byte values. �e
single quote (') and backslash (\) characters cannot be represented directly and must be encoded with
escape sequences. �e \x escape sequence is always followed by exactly two hexadecimal digits. Each
character (after resolving escape sequences) corresponds to exactly one byte in the resulting integer
value, and the right-most character corresponds to the least significant byte.

Figure 9. A character literal is composed of a sequence of printable ASCII characters enclosed
in single quotes. �e single quote (') and backslash (\) characters cannot be represented directly
and must be encoded with escape sequences.

8 OpenDDL Specification

Escape Sequence ASCII Code Description

\" 0x22 Double quote

\' 0x27 Single quote

\? 0x3F Question mark

\\ 0x5C Backslash

\a 0x07 Bell

\b 0x08 Backspace

\f 0x0C Formfeed

\n 0x0A Newline

\r 0x0D Carriage return

\t 0x09 Horizontal tab

\v 0x0B Vertical tab

\xhh – Byte value specified by the two hex digits hh

Table 2. �ese are the escape sequences supported by OpenDDL for character literals.

Figure 10. An escape character consists of a backslash (\) followed by a single character code.
In the case of the \x character code, the escape sequence includes exactly two additional
hexadecimal digits.

OpenDDL Specification 9

An integer literal is composed of an optional plus or minus sign followed by a decimal, hexadecimal,
octal, binary, or character literal, as shown in Figure 11.

[Example — In the following code, the same 32-bit unsigned integer value is repeated five times using
different literal types: a decimal literal, a hexadecimal literal, an octal literal, a binary literal, and a
character literal.

uint32
{
 1094861636,
 0x41424344,
 0o10120441504,
 0b0100_0001_0100_0010_0100_0011_0100_0100,
 'ABCD'
}

 — End example]

Figure 11. An integer literal is composed of an optional sign followed by a decimal,
hexadecimal, octal, binary, or character literal.

3.3 Floating-Point Numbers

Floating-point numbers can be specified as a decimal number with or without a decimal point and
fraction, and with or without a trailing exponent, as shown in Figure 12. Floating-point numbers may
also be specified as hexadecimal, octal, or binary literals representing the underlying bit pattern of the
number. �is is particularly useful for lossless exchange of floating-point data since round-off errors
possible in the conversion to and from a decimal representation are avoided. Using a hexadecimal,
octal, or binary representation is also the only way to specify a floating-point infinity or not-a-number
(NaN) value.

As with integer literals, an underscore character may be inserted between any two consecutive
numerical digits in a floating-point literal to enhance readability. Underscore characters are ignored and
do not affect the value of a literal.

10 OpenDDL Specification

Figure 12. A floating-point literal is composed of an optional sign followed by a number with
or without a decimal point and an optional exponent. Hexadecimal, octal, and binary literals
representing the underlying bit pattern are also accepted.

3.4 Strings

Strings are composed of a sequence of characters enclosed in double quotes, as shown in Figure 13.
Unicode values (encoded as UTF-8) in the following ranges may be directly included in a string literal:

• [U+0020, U+0021]

• [U+0023, U+005B]

• [U+005D, U+007E]

• [U+00A0, U+D7FF]

• [U+E000, U+FFFD]

• [U+010000, U+10FFFF]

�is is the only place where non-ASCII characters are allowed other than in comments.

A string may contain the escape sequences defined for character literals (see Figure 10). �e double
quote (") and backslash (\) characters cannot be represented directly and must be encoded with escape
sequences. String literals also support the \u escape sequence, which specifies a nonzero Unicode
character using exactly four hexadecimal digits immediately following the u. In order to support
Unicode characters outside the Basic Multilingual Plane (BMP), a six-digit code can be specified by
using an uppercase U. �e \U escape sequence must be followed by exactly six hexadecimal digits that
specify a value in the range [0x000001, 0x10FFFF].

Multiple string literals may be placed adjacent to each other with or without intervening whitespace,
and this results in concatenation.

OpenDDL Specification 11

Figure 13. A string literal is composed of a sequence of Unicode characters enclosed in double
quotes. �e double-quote ("), backslash (\), and non-printing control characters are excluded
from the set of characters that can be directly represented. A string may contain the same escape
characters as a character literal as well as additional Unicode escape sequences. Adjacent strings
are concatenated.

3.5 Base64 Data

Raw binary data can be expressed in the Base64 format. As shown in Figure 14, Base64 data consists
of a sequence of characters composed from the set {A–Z, a–z, 0–9, +, /}. Each of the 64 characters in
the encoding set corresponds to the 6-bit value assigned to it in Table 3.

Figure 14. Base64 data is composed of uppercase and lowercase letters, numbers, the plus
symbol, and the slash symbol. �ere may be up to two equal signs for padding at the end.

�e number of encoded characters in a block of Base64 data must be 0, 2, or 3 modulo 4. Each group
of four characters corresponds to exactly three decoded bytes having values determined as follows.

• �e value of the first byte is given by the six bits encoded by the first character concatenated with the
two most significant bits encoded by the second character.

• �e value of the second byte is given by the four least significant bits encoded by the second character
concatenated with the four most significant bits encoded by the third character.

• �e value of the third byte is given by the two least significant bits encoded by the third character
concatenated with the six bits encoded by the fourth character.

12 OpenDDL Specification

Char Value Char Value Char Value Char Value

A 0 Q 16 g 32 w 48

B 1 R 17 h 33 x 49

C 2 S 18 i 34 y 50

D 3 T 19 j 35 z 51

E 4 U 20 k 36 0 52

F 5 V 21 l 37 1 53

G 6 W 22 m 38 2 54

H 7 X 23 n 39 3 55

I 8 Y 24 o 40 4 56

J 9 Z 25 p 41 5 57

K 10 a 26 q 42 6 58

L 11 b 27 r 43 7 59

M 12 c 28 s 44 8 60

N 13 d 29 t 45 9 61

O 14 e 30 u 46 + 62

P 15 f 31 v 47 / 63

Table 3. �ese are the 64 character values used in Base64 data.

If the number of encoded characters is 2 modulo 4, then the final two characters produce a single byte
of decoded data, and the four least significant bits encoded by the second character are discarded. In
this case, the encoded Base64 data may end with two equals sign characters as padding to make the
total number of encoded characters a multiple of four. �is padding is not required, and it is ignored if
it is present.

If the number of encoded characters is 3 modulo 4, then the final three characters produce two bytes of
decoded data, and the two least significant bits encoded by the third character are discarded. In this
case, the encoded Base64 data may end with one equals sign character as padding to make the total
number of encoded characters a multiple of four. �is padding is not required, and it is ignored if it is
present.

Whitespace may appear anywhere inside Base64 data, and it is ignored. Because the forward slash
character has a specific meaning in the Base64 format, comments are not permitted to occur inside
Base64 data.

OpenDDL Specification 13

4 Identifiers

An identifier is a sequence of characters composed from the set {A–Z, a–z, 0–9, _}, as shown in
Figure 15. �at is, an identifier is composed of uppercase and lowercase roman letters, the numbers 0
through 9, and the underscore. An identifier cannot begin with a number.

Identifiers are used to specify structure types, names, properties, and data states. �e identifiers used
for the 16 primitive data types listed in Table 1 are reserved as structure types, but they can still be used
as names, properties, and data states.

All identifiers consisting of a single lowercase letter followed by zero or more numerical digits are
reserved as structure types for future use by the language. A derivative format may define any other
identifier as the type of a derived structure.

Figure 15. An identifier is composed of uppercase and lowercase roman letters, the numbers
0 through 9, and the underscore.

14 OpenDDL Specification

5 Names

Any structure may have a name. Names are used to identify specific structures so they can be referenced
from within primitive structures or through property values. A name can be a global name or a local
name. Each global name must be unique among all global names used inside the file containing it, and
each local name must be unique among all local names used by its siblings in the structure tree. Local
names can be reused inside different structures, and they can duplicate global names.

As shown in Figure 16, a name is composed of either a dollar sign character ($) or percent sign character
(%) followed by an identifier with no intervening whitespace. A name that begins with a dollar sign is a
global name, and a name that begins with a percent sign is a local name. A name is assigned to a
structure by placing it immediately after the structure identifier (and no whitespace is technically
required before the dollar sign). [Example —

Vertex $apex
{
 float {1.0, 2.0, 3.0}
}

�e Vertex structure has the global name $apex. �is structure can be referenced from elsewhere in
the file by using the name $apex as a value of the ref type. — End example]

Figure 16. A name is composed of either a dollar sign character ($) or a percent sign character
(%) followed by an identifier with no intervening whitespace.

OpenDDL Specification 15

6 References

A reference is a value that forms a link to a specific structure within an OpenDDL file. If the target
structure has a global name, then the value of a reference to it is simply the name of the structure,
beginning with the dollar sign character. If the target structure has a local name, then the value of a
reference to it depends on the scope in which the reference appears. If the reference appears inside a
structure that is a sibling of the target structure, then its value is the name of the target structure,
beginning with the percent sign character. Otherwise, the value of the reference consists of a sequence
of names, as shown in Figure 17, that identify a sequence of structures along a branch in a tree of
structures. Only the first name in the sequence can be a global name, and the rest must be local names.

�e value of a reference can also be keyword null to indicate that a reference has no target structure.

[Example — In the following code, the structure types Person, Name, and Friends are defined by a
derivative format. References are used to link people to the data structures representing their friends.

Person $charles
{
 Name {string {"Charles"}}
 Friends {ref {$alice, $bob}}
}

Person $alice {...}
Person $bob {...}

 — End example]

Figure 17. A reference is either the name of a structure or the keyword null. A structure may
be identified by a sequence of names providing the path to the target along a branch in a tree of
structures.

16 OpenDDL Specification

7 Primitive Data

Primitive structures contain homogeneous data of a single primitive data type in one of three possible
forms.

7.1 Flat Data

�e data contained in a primitive structure may consist of a flat, comma-separated list individual literal
values, as shown in Figure 18. �e size of the list is unbounded. In this case, the structure identifier is
not followed by brackets, but only an optional name and the data itself enclosed in braces.

Figure 18. �e data payload of a primitive structure may be a homogeneous list of literal values
separated by commas.

Note that an implementation would use its knowledge of the primitive structure’s data type to choose
only a single rule in Figure 18, as opposed to allowing any of the types of data to appear inside the
braces. (It is also not possible to disambiguate among the numerical data types without some extra
information.)

7.2 Subarray Data

�e data contained in a primitive structure may also be specified as a comma-separated list of subarrays
of literal values, as shown in Figure 19. �e size of the subarrays is specified by placing a positive

OpenDDL Specification 17

integer value inside brackets immediately following the structure identifier, preceding the structure’s
optional name. �e data belonging to each subarray is then specified as a comma-separated list of values
enclosed in braces. In this case, the identifiers shown in Figure 19 do not apply and may not appear in
the structure’s data.

As before, an implementation would choose only a single rule in Figure 19 based on the type of the
primitive structure.

Figure 19. A data payload may consist of a list of subarrays separated by commas. Each
subarray contains a homogeneous array of values enclosed in braces.

�e number of elements in each subarray must always match the array size specified inside the brackets
following the primitive type identifier. If the array size is one, then the braces are still required. While
the size of the subarrays is fixed, the total number of subarrays is unbounded.

[Example — Suppose that a VertexArray structure expects to contain an array of 3D positions, each
of which is specified as an array of three floating-point values. �is would be written as follows.

18 OpenDDL Specification

VertexArray
{
 float[3]
 {
 {1.0, 2.0, 3.0}, {0.5, 0.0, 0.5}, {0.0, −1.0, 4.0}
 }
}

 — End example]

7.3 Data States

Primitive structures containing subarrays may also specify data states that associate a particular state
with each subarray. �e meaning of data states are defined by a derivative format. �e presence of data
states is indicated by writing an asterisk (*) immediately after the subarray size enclosed in brackets.
In this case, a state identifier may precede any subarray in the data payload. If a state identifier is omitted
for any particular subarray, then the state associated with the preceding subarray continues to apply.
�e initial state is defined by the derivative format.

[Example — �e following Path structure provides an example in which data states are used to specify
how individual points in a list are to be interpreted. In this example, the state M causes the drawing
position to be moved to the associated point, the state L causes a line to be drawn to the associated
point, and the state C causes a cubic Bézier curve to be drawn using the preceding point and the
following three points.

Path
{
 float[2]*
 {
 M{1.0, 1.0}, L{2.0, 1.0}, C{3.0, 1.0}, {3.0, 2.0}, {2.0, 3.0}
 }
}

 — End example]

OpenDDL Specification 19

8 Properties

A derived structure may accept one or more properties that can be specified separately from the data
contained inside the structure. Properties are written in a comma-separated list inside parentheses
following the name of the structure, or just following the structure identifier if there is no name. As
shown in Figure 20, each property is composed of a property identifier followed by an equals sign
character (=) and the literal value of the property. �e type of the property’s value must be specified by
some external source of information such as a schema or the implementation of the derivative format.
For example, a string cannot be specified for a property that was expecting an integer. �e specified
type determines which subrule in Figure 20 is applied, and a mismatch must be detected at the time that
the property is parsed.

Figure 20. A property is composed of an identifier followed by an equals character (=) and the
value of the property.

[Example — Suppose that a data structure called Mesh accepts a property called lod that takes an
integer representing the level of detail to which it pertains. �is property would be specified as follows.

Mesh (lod = 2)
{
 ...
}

If another property called part existed and accepted a string (perhaps to identify a body part), then that
property could be added to the list as follows.

Mesh (lod = 2, part = "Left Hand")
{
 ...
}

 — End example]

20 OpenDDL Specification

�e order in which properties are listed is not significant. Derivative formats may require that certain
properties always be specified. Optional properties must always have a default value or be specially
handled as being in an unspecified state. �e same property can be specified more than once in the same
property list, and in such a case, all but the final value specified for the same property must be ignored.

Boolean properties allow a special syntax in which the assignment of a value of true or false can be
omitted. In this case, the presence of the property implies that its value is true. �is is a useful shorthand
notation for Boolean properties having a default value of false. Properties having any other type must
include an assigned value.

A structure is allowed to have properties that are not recognized by the implementation of a derivative
format in order to support extensions. Unrecognized properties must be ignored and must not generate
an error. However, the value assigned to such a property must still be parsable as one of the primitive
data types.

�e syntax does not allow primitive structures to have a property list.

OpenDDL Specification 21

9 Comments and Whitespace

�e language supports C++-style block comments and single-line comments as follows:

• Any occurrence of /* begins a comment that ends immediately after the next occurrence of */. Such
comments do not nest.

• Any occurrence of // begins a comment that ends immediately after the next newline character.

If any sequence /*, */, or // appears inside a character literal or string literal, then it is part of the
literal value and not treated as a comment.

Comments may include any Unicode characters encoded as UTF-8. �e only other place where non-
ASCII characters are allowed is inside a string literal (see Section 3.4).

Comments cannot occur inside base64 data (see Section 3.5).

All characters having a value in the range [1, 32] (which includes the space, tab, newline, and carriage
return characters), as well as all characters belonging to comments, are considered to be whitespace in
OpenDDL. Any arbitrarily long contiguous sequence of whitespace characters is equivalent to a single
space character.

22 OpenDDL Specification

10 Formal Grammar

For reference, the formal grammar defining the OpenDDL syntax using Backus-Naur Form and regular
expressions is shown in Listing 1. �e figures displayed throughout this specification precisely
correspond to this grammar. A syntactically valid OpenDDL file satisfies the file rule at the end of the
listing.

Listing 1. �is is the formal grammar defining the OpenDDL syntax.

identifier ::= [A-Za-z_] [0-9A-Za-z_]*

name ::= ("$" | "%") identifier

reference ::= name ("%" identifier)* | "null"

hex-digit ::= [0-9A-Fa-f]

escape-char ::= '\"' | "\'" | "\?" | "\\" | "\a" | "\b" | "\f"
 | "\n" | "\r" | "\t" | "\v"
 | "\x" hex-digit hex-digit

bool-literal ::= "false" | "0" | "true" | "1"

decimal-literal ::= [0-9] ("_"? [0-9])*

hex-literal ::= ("0x" | "0X") hex-digit ("_"? hex-digit)*

octal-literal ::= ("0o" | "0O") [0-7] ("_"? [0-7])*

binary-literal ::= ("0b" | "0B") ("0" | "1") ("_"? ("0" | "1"))*

char-literal ::= "'" ([#x20-#x26#x28-#x5B#x5D-#x7E]
 | escape-char)+ "'"

integer-literal ::= ("+" | "-")? (decimal-literal | hex-literal
 | octal-literal | binary-literal | char-literal)

float-literal ::= ("+" | "-")?
 (([0-9] ("_"? [0-9])* ("." ([0-9] ("_"? [0-9])*)?)?
 | "." [0-9] ("_"? [0-9])*)
 (("e" | "E") ("+" | "-")? [0-9] ("_"? [0-9])*)?
 | hex-literal | octal-literal | binary-literal)

string-literal ::= ('"' ([#x20-#x21#x23-#x5B#x5D-#x7E#xA0-#xD7FF#xE000-
 #xFFFD#x010000-#x10FFFF] | escape-char
 | "\u" hex-digit hex-digit hex-digit hex-digit

OpenDDL Specification 23

 | "\U" hex-digit hex-digit hex-digit hex-digit
 hex-digit hex-digit)* '"')+

data-type ::= "bool" | "b" | "int8" | "i8" | "int16" | "i16"
 | "int32" | "i32" | "int64" | "i64" | "uint8" | "u8"
 | "uint16" | "u16" | "uint32" | "u32" | "uint64" | "u64"
 | "half" | "h" | "float" | "f" | "double" | "d" | "float16"
 | "f16" | "float32" | "f32" | "float64" | "f64" | "string"
 | "s" | "ref" | "r" | "type" | "t" | "base64" | "z"

base64-data ::= ([A-Za-z0-9] | "+" | "/")* "="? "="?

data-list ::= bool-literal ("," bool-literal)*
 | integer-literal ("," integer-literal)*
 | float-literal ("," float-literal)*
 | string-literal ("," string-literal)*
 | reference ("," reference)*
 | data-type ("," data-type)*
 | base64-data ("," base64-data)*

data-array-list ::= identifier? "{" bool-literal (","
 bool-literal)* "}" ("," identifier? "{"
 bool-literal ("," bool-literal)* "}")*
 | identifier? "{" integer-literal (","
 integer-literal)* "}" ("," identifier? "{"
 integer-literal ("," integer-literal)* "}")*
 | identifier? "{" float-literal (","
 float-literal)* "}" ("," identifier? "{"
 float-literal ("," float-literal)* "}")*
 | identifier? "{" string-literal (","
 string-literal)* "}" ("," identifier? "{"
 string-literal ("," string-literal)* "}")*
 | identifier? "{" reference (","
 reference)* "}" ("," identifier? "{"
 reference ("," reference)* "}")*
 | identifier? "{" data-type (","
 data-type)* "}" ("," identifier? "{"
 data-type ("," data-type)* "}")*
 | identifier? "{" base64-data (","
 base64-data)* "}" ("," identifier? "{"
 base64-data ("," base64-data)* "}")*

property ::= identifier ("=" (bool-literal | integer-literal
 | float-literal | string-literal | reference
 | data-type | base64-data))?

structure ::= data-type (name? "{" data-list? "}"
 | "[" integer-literal "]" "*"? name?

24 OpenDDL Specification

 "{" data-array-list? "}")
 | identifier name? ("(" (property ("," property)*)?
 ")")? "{" structure* "}"

file ::= structure*

OpenDDL Specification 25

11 Revision History

Version 3.0

�e following changes were made in OpenDDL version 3.0.

• �e ability to specify 0 and 1 as literal boolean values was added.

• �e option to omit the assignment of true to a boolean property was added.

• State identifiers were added for subarray data.

• �e Base64 data type was added.

Version 2.0

�e following changes were made in OpenDDL version 2.0.

• �e short primitive data type identifiers b, i8, i16, i32, i64, u8, u16, u32, u64, h, f, d, s, r, and t
were added as alternatives to the long identifiers.

• �e float16, float32, and float64 primitive data type identifiers and their short forms f16, f32,
and f64 were added as alternatives to the identifiers half, float, and double.

• All structure identifiers consisting of a single lowercase letter followed by zero or more numerical
digits were reserved for future use by the language.

Version 1.1

�e following changes were made in OpenDDL version 1.1.

• �e half primitive data type was added to accommodate 16-bit floating-point numbers.

• �e ability to use underscore characters as visual separators in numerical literals was added.

• Support for octal literals was added.

	1 Introduction
	2 Structures
	3 Data Types
	3.1 Booleans
	3.2 Integers
	3.3 Floating-Point Numbers
	3.4 Strings
	3.5 Base64 Data

	4 Identifiers
	5 Names
	6 References
	7 Primitive Data
	7.1 Flat Data
	7.2 Subarray Data
	7.3 Data States

	8 Properties
	9 Comments and Whitespace
	10 Formal Grammar
	11 Revision History
	Version 3.0
	Version 2.0
	Version 1.1

